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Transcendental numbers

A real number is algebraic if it is the root of a polynomial with
integer coefficients. A number is transcendental if it is not
algebraic.

Squaring the circle

Given a circle, construct (using a ruler and a compass) a square
that has the same area.

It turns out that if this is possible then the number π has to be an
algebraic number.

Liouville 1844: there exist (infinitely many) transcendental
numbers.

(Cantor 1873: “Most” real numbers are transcendental.)

Lindemann 1882: π is transcendental
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Infinity

Galileo’s Paradox Galileo 1638:

1 2 3 4 ... n ...
1 4 9 16 ... n2 ...

(one-to-one correspondence, density 0)

Bolzano 1851: “Paradoxien des Unendlichen”
Menge (= set=množina=ensemble=...)

Hilbert: the Grand Hotel (1924)

Cantor 1873: cardinal numbers
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Set Theory

Cantor’s letter to Dedekind, December 1873:

Countable sets = those for which there is a one-to-one
correspondence with the set N of all of all natural numbers.

The set of all real numbers R is uncountable while the set of all
algebraic real numbers is countable, therefore there exist
uncountably many transcendental numbers.

Proof. Let {c1, c2, c3, ...} be a sequence of real numbers. There
exists a real number c not in the sequence.

a1 a2 a3 c b3 b2 b1
Let {a1, b1} be first two members of the sequence {cn}. Let
{a2, b2} be first two members of the sequence inside the interval
(a1, b1) and so on. Let c = limn an.
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The Diagonal Method

Cantor 1891 - another proof of 2ℵ0 > ℵ0.
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Let R ⊂ A× A. For x ∈ A
let Rx = {y ∈ A : (x , y) ∈ R}.

The set D = {x ∈ A : (x , x) /∈ R}
has the property that D 6= Rx
for every x ∈ A.

x ∈ D iff x /∈ Rx

Applications: |P(A)| > |A|, therefore 2ℵα > ℵα;
There exists no set {x : x /∈ x} (“Russell’s Paradox”).
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The Axiom of Choice

Zermelo 1904: Every set can be well-ordered.

Axiom of Choice. For every set S of nonempty sets there exists a
function F such that F (X ) ∈ X for every X ∈ S .

Vitali 1905: There exists a nonmeasurable set of reals.
Proof. Using the axiom of choice, there is a set V that contains
exactly one element of each coset of the quotient R/Q.

Hausdorff 1914: A paradoxical decomposition of the sphere:
A∪B ∪C ∪Q with Q countable and A, B, C , B ∪C all congruent
to each other.
(Using the free product of the cyclic groups {1, ϕ} and {1, ψ, ψ2}
which can easily be decomposed into A ∪ B ∪ C .)

Banach-Tarski 1924: The unit ball can be decomposed into a
finitely many pieces that can be rearranged to form TWO unit
balls. (The Banach-Tarski Paradox.)

Gödel 1938: The axiom of choice is consistent with the other
axioms of set theory.
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The Liar Paradox

Epimenides of Crete (around 600 BC, quoted by Apostle Paul):
“The Cretans are liars.”

Eubulides (around 350 BC): “Does a man who says that he is lying
speak the truth?”

The Liar Paradox:
This statement is false.

An example of self-reference. Other examples:

The barber paradox: A barber is a man who shaves those and only
those men who do not shave themselves.

Russell’s Paradox:
{x : x /∈ x}
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Gödel’s Incompleteness Theorems

Gödel 1931:
Arithmetic is incomplete. (The First Incompleteness Theorem.)
Arithmetic cannot prove its own consistency. (The Second
Incompleteness Theorem.)

Recursive functions and relations, arithmetization of the language
(Gödel numbers #).

If T is a recursive set of axioms containing the arithmetic then
there exists a sentence σ such that

T ` [σ ↔ ¬∃p(p = #(proof of σ))]

It follows that (if T is consistent then) σ is undecidable in T .
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(Gödel numbers #).

If T is a recursive set of axioms containing the arithmetic then
there exists a sentence σ such that

T ` [σ ↔ ¬∃p(p = #(proof of σ))]

It follows that (if T is consistent then) σ is undecidable in T .

Thomas Jech Paradoxes, or The Art of the Impossible



Incompleteness and Undecidability

The Diagonal Lemma. Let ϕ be a formula of one free variable.
Then there is a sentence σ such that

T ` σ ↔ ϕ(#σ).

Letting ϕ(x) be “x is unprovable”, one gets the Gödel sentence.

Assuming that ϕ = ¬τ where τ is a definition of truth, one gets
Tarski 1936 : Truth is undefinable in T .

Undecidable Statements

Turing 1936: The halting problem.
(No algorithm exists to decide whether a given program halts or
runs forever.)

Gödel 1938, Cohen 1963: The Continuum Hypothesis, the Axiom
of Choice.

Other examples: Inaccessible cardinals (Zermelo 1930),
diophantine equations (Matiyasevich 1970) and many others, in set
theory, arithmetic, algebra, topology etc.

Thomas Jech Paradoxes, or The Art of the Impossible



Incompleteness and Undecidability

The Diagonal Lemma. Let ϕ be a formula of one free variable.
Then there is a sentence σ such that

T ` σ ↔ ϕ(#σ).

Letting ϕ(x) be “x is unprovable”, one gets the Gödel sentence.
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A short proof of the Second Incompleteness Theorem

Set theory (if consistent) does not prove its own consistency. It
does not prove that there exists a model of set theory.

Proof does not use Gödel’s First Theorem (rather a version of the
Liar Paradox directly). Inspired by Vopěnka’s proof (1966) that
uses Berry’s Paradox (around 1890: “the smallest positive integer
not definable in fewer than twelve words”).

A model is a set M with a binary relation ∈M that satisfies the
axioms of set theory.

If M and N are models, we define

M < N if there exists some m ∈ N such that ∈M= (∈m)∗

where (∈m)∗ is the set of all pairs (x , y) such that N |= x ∈m y .

The relation < is transitive: if M1 < M2 and M2 < M3 then
M1 < M3.
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A short proof of the Second Incompleteness Theorem

A property is a formula with one free variable. Consider the
property p (of properties q)

∃MM |= ¬q(q)

and let A be the sentence p(p). Then (provably in set theory)

A ↔ ∃M (M |= ¬A)

and if M is a model then

M |= A ↔ ∃N < M (N |= ¬A).

We say that M is positive if M |= A, and negative otherwise. As a
consequence of the last equivalence, if M is negative then all
N < M are positive.
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A short proof of the Second Incompleteness Theorem

Now, assuming that set theory proves that there exists a model, it
also proves that for every model M there exists a model N < M.
From this we prove a contradiction.

Let M1 be a model. If M1 is positive, there exists a negative model
M2 < M1; otherwise let M2 = M1. Then let M3 < M2. Since M2 is
negative, M3 is positive. Therefore there exists a negative
M4 < M3 and we have M4 < M2 by transitivity. Hence M4 is
positive, a contradiction.

[Proceedings Amer. Math. Society 121 (1994), 311-313.]
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